Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(11): e202317414, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38225198

RESUMO

Ammonia (NH3 ) is recognized as a transportable carrier for renewable energy fuels. Photoelectrochemical nitrate reduction reaction (PEC NO3 RR) offers a sustainable solution for nitrate-rich wastewater treatment by directly converting solar energy to ammonia. In this study, we demonstrate the highly selective PEC ammonia production from NO3 RR by constructing a CoCu/TiO2 /Sb2 Se3 photocathode. The constructed CoCu/TiO2 /Sb2 Se3 photocathode achieves an ammonia Faraday efficiency (FE) of 88.01 % at -0.2 VRHE and an ammonia yield as high as 15.91 µmol h-1 cm-2 at -0.3 VRHE with an excellent onset potential of 0.43 VRHE . Dynamics experiments and theoretical calculations have demonstrated that the CoCu/TiO2 /Sb2 Se3 photocathode possesses high light absorption capacity, excellent carrier transfer capability, and high charge separation and transfer efficiencies. The photocathode can effectively adsorb the reactant NO3 - and intermediate, and the CoCu co-catalyst increases the maximum Gibbs free energy difference between NO3 RR and HER. Meanwhile, the Co species enhances the spin density of Cu, and increases the density of states near the Fermi level in pdos, which results in a high PEC NO3 RR activity on CoCu/TiO2 /Sb2 Se3 . This work provides a new avenue for the feasibility of efficient PEC ammonia synthesis from nitrate-rich wastewater.

2.
ACS Nano ; 17(21): 22071-22081, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37901939

RESUMO

Photoelectrochemical (PEC) water splitting is an attractive strategy to convert solar energy to hydrogen. However, the lifetime of PEC devices is restricted by the photocorrosion of semiconductors and the instability of co-catalysts. Herein, we report a feasible in situ inherent cross-linking method for stabilizing semiconductors that uses a CoFe-dispersed polyacrylamide (PAM) hydrogel as a transparent protector. The CoFe-PAM hydrogel protected BiVO4 (BVO) photoanode reached a photocurrent density of 5.7 mA cm-2 at 1.23 VRHE under AM 1.5G illumination with good stability. The PAM hydrogel network improved the loading of Fe sites while enabling the retention of more CoFe co-catalysts and increasing the electron density of the reaction active sites, further improving the PEC performance and stability. More importantly, by tuning the polymerization network, we pioneer the use of quasi-solid-state electrolytes in photoelectrochemistry, where the high concentration of ionic solvent in the PAM hydrogel ensures effective charge transport and good water storage owing to the hydrophilic and porous structure of the hydrogel. This work expands the scope of PEC research by providing a class of three-dimensional hydrogel electrocatalysts and quasi-solid-state electrolytes with huge extension potential, and the versatility of these quasi-solid-state electrolytes can be employed for other semiconductors.

3.
Sci Adv ; 9(1): eade4589, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598972

RESUMO

Photoelectrochemical (PEC) water splitting that functions in pH-neutral electrolyte attracts increasing attention to energy demand sustainability. Here, we propose a strategy to in situ form a NiB layer by tuning the composition of the neutral electrolyte with the additions of nickel and borate species, which improves the PEC performance of the BiVO4 photoanode. The NiB/BiVO4 exhibits a photocurrent density of 6.0 mA cm-2 at 1.23 VRHE with an onset potential of 0.2 VRHE under 1 sun illumination. The photoanode displays a photostability of over 600 hours in a neutral electrolyte. The additive of Ni2+ in the electrolyte, which efficiently inhibits the dissolution of NiB, can accelerate the photogenerated charge transfer and enhance the water oxidation kinetics. The borate species with B─O bonds act as a promoter of catalyst activity by accelerating proton-coupled electron transfer. The synergy effect of both species suppresses the surface charge recombination and inhibits the photocorrosion of BiVO4.

4.
Nano Lett ; 21(3): 1311-1319, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33493396

RESUMO

Herein is developed a ternary heterostructured catalyst, based on a periodic array of 1D TiN nanotubes, with a TiO2 nanoparticulate intermediate layer and a In2O3-x(OH)y nanoparticulate shell for improved performance in the photocatalytic reverse water gas shift reaction. It is demonstrated that the ordering of the three components in the heterostructure sensitively determine its activity in CO2 photocatalysis. Specifically, TiN nanotubes not only provide a photothermal driving force for the photocatalytic reaction, owing to their strong optical absorption properties, but they also serve as a crucial scaffold for minimizing the required quantity of In2O3-x(OH)y nanoparticles, leading to an enhanced CO production rate. Simultaneously, the TiO2 nanoparticle layer supplies photogenerated electrons and holes that are transferred to active sites on In2O3-x(OH)y nanoparticles and participate in the reactions occurring at the catalyst surface.

5.
Nat Commun ; 11(1): 6095, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257718

RESUMO

The surface frustrated Lewis pairs (SFLPs) on defect-laden metal oxides provide catalytic sites to activate H2 and CO2 molecules and enable efficient gas-phase CO2 photocatalysis. Lattice engineering of metal oxides provides a useful strategy to tailor the reactivity of SFLPs. Herein, a one-step solvothermal synthesis is developed that enables isomorphic replacement of Lewis acidic site In3+ ions in In2O3 by single-site Bi3+ ions, thereby enhancing the propensity to activate CO2 molecules. The so-formed BixIn2-xO3 materials prove to be three orders of magnitude more photoactive for the reverse water gas shift reaction than In2O3 itself, while also exhibiting notable photoactivity towards methanol production. The increased solar absorption efficiency and efficient charge-separation and transfer of BixIn2-xO3 also contribute to the improved photocatalytic performance. These traits exemplify the opportunities that exist for atom-scale engineering in heterogeneous CO2 photocatalysis, another step towards the vision of the solar CO2 refinery.

6.
Small ; 16(49): e2005754, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33201581

RESUMO

Nanoscale titanium nitride TiN is a metallic material that can effectively harvest sunlight over a broad spectral range and produce high local temperatures via the photothermal effect. Nanoscale indium oxide-hydroxide, In2 O3- x (OH)y , is a semiconducting material capable of photocatalyzing the hydrogenation of gaseous CO2 ; however, its wide electronic bandgap limits its absorption of photons to the ultraviolet region of the solar spectrum. Herein, the benefits of both nanomaterials in a ternary heterostructure: TiN@TiO2 @In2 O3- x (OH)y are combined. This heterostructured material synergistically couples the metallic TiN and semiconducting In2 O3- x (OH)y phases via an interfacial semiconducting TiO2 layer, allowing it to drive the light-assisted reverse water gas shift reaction at a conversion rate greatly surpassing that of its individual components or any binary combinations thereof.

7.
Chemistry ; 26(12): 2685-2692, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31788871

RESUMO

Photoelectrochemical (PEC) water splitting is a promising method for the conversion of solar energy into chemical energy stored in the form of hydrogen. Nanostructured hematite (α-Fe2 O3 ) is one of the most attractive materials for a highly efficient charge carrier generation and collection due to its large specific surface area and the short minority carrier diffusion length. In the present work, the PEC water splitting performance of nanostructured α-Fe2 O3 is investigated which was prepared by anodization followed by annealing in a low oxygen ambient (0.03 % O2 in Ar). It was found that low oxygen annealing can activate a significant PEC response of α-Fe2 O3 even at a low temperature of 400 °C and provide an excellent PEC performance compared with classic air annealing. The photocurrent of the α-Fe2 O3 annealed in the low oxygen at 1.5 V vs. RHE results as 0.5 mA cm-2 , being 20 times higher than that of annealing in air. The obtained results show that the α-Fe2 O3 annealed in low oxygen contains beneficial defects and promotes the transport of holes; it can be attributed to the improvement of conductivity due to the introduction of suitable oxygen vacancies in the α-Fe2 O3 . Additionally, we demonstrate the photocurrent of α-Fe2 O3 annealed in low oxygen ambient can be further enhanced by Zn-Co LDH, which is a co-catalyst of oxygen evolution reaction. This indicates low oxygen annealing generates a promising method to obtain an excellent PEC water splitting performance from α-Fe2 O3 photoanodes.

8.
ACS Appl Mater Interfaces ; 11(49): 45665-45673, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31714052

RESUMO

With a large-scale usage of portable electric appliances, a high demand for increasingly high-density energy storage devices has emerged. MoO3 has, in principle, a large potential as a negative electrode material in supercapacitive devices due to high charge densities that can be obtained from its reversible redox reactions. Nevertheless, the extremely poor electrochemical stability of MoO3 in aqueous electrolytes prevents a practical use in high capacitance devices. In this work, we describe how to overcome this severe stability issue by forming amorphous molybdenum oxide/tantalum oxide nanotubes by anodic oxidation of a Mo-Ta alloy. The presence of a critical amount of Ta oxide (>20 at. %) prevents the electrochemical decay of the MoO3 phase and thus yields an extremely high stability. Due to the protection provided by tantalum oxide, no capacitance losses are measureable after 10,000 charging/discharging cycles.

9.
Sci Rep ; 9(1): 13439, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530838

RESUMO

Hollow titanium dioxide (TiO2) nanotubes offer substantially higher drug loading capacity and slower drug release kinetics compared to solid drug nanocarriers of comparable size. In this report, we load TiO2 nanotubes with iron oxide nanoparticles to facilitate site-specific magnetic guidance and drug delivery. We generate magnetic TiO2 nanotubes (TiO2NTs) by incorporating a ferrofluid containing Ø ≈ 10 nm iron oxide nanoparticles in planar sheets of weakly connected TiO2 nanotubes. After thermal annealing, the magnetic tubular arrays are loaded with therapeutic drugs and then sonicated to separate the nanotubes. We demonstrate that magnetic TiO2NTs are non-toxic for HeLa cells at therapeutic concentrations (≤200 µg/mL). Adhesion and endocytosis of magnetic nanotubes to a layer of HeLa cells are increased in the presence of a magnetic gradient field. As a proof-of-concept, we load the nanotubes with the topoisomerase inhibitor camptothecin and achieve a 90% killing efficiency. We also load the nanotubes with oligonucleotides for cell transfection and achieve 100% cellular uptake efficiency. Our results demonstrate the potential of magnetic TiO2NTs for a wide range of biomedical applications, including site-specific delivery of therapeutic drugs.


Assuntos
Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanotubos/química , Titânio/química , Camptotecina/administração & dosagem , Camptotecina/farmacocinética , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos/instrumentação , Liberação Controlada de Fármacos , Compostos Férricos/química , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/farmacocinética , Células HeLa , Humanos , Campos Magnéticos , Nanopartículas Metálicas/química , Nanotubos/toxicidade , Espectroscopia Fotoeletrônica , Estudo de Prova de Conceito , Inibidores da Topoisomerase I/administração & dosagem , Inibidores da Topoisomerase I/farmacocinética
10.
ChemistryOpen ; 7(10): 797-802, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30302303

RESUMO

In the present work, we report the use of TiO2 nanotube (NT) layers with a regular intertube spacing that are decorated by Pt nanoparticles through the atomic layer deposition (ALD) of Pt. These Pt-decorated spaced (SP) TiO2 NTs are subsequently explored for photocatalytic H2 evolution and are compared to classical close-packed (CP) TiO2 NTs that are also decorated with various amounts of Pt by using ALD. On both tube types, by varying the number of ALD cycles, Pt nanoparticles of different sizes and areal densities are formed, uniformly decorating the inner and outer walls from tube top to tube bottom. The photocatalytic activity for H2 evolution strongly depends on the size and density of Pt nanoparticles, driven by the number of ALD cycles. We show that, for SP NTs, a much higher photocatalytic performance can be achieved with significantly smaller Pt nanoparticles (i.e. for fewer ALD cycles) compared to CP NTs.

11.
ACS Appl Mater Interfaces ; 10(21): 18220-18226, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29741090

RESUMO

Au and Pt do not form homogeneous bulk alloys as they are thermodynamically not miscible. However, we show that anodic TiO2 nanotubes (NTs) can in situ be uniformly decorated with homogeneous AuPt alloy nanoparticles (NPs) during their anodic growth. For this, a metallic Ti substrate containing low amounts of dissolved Au (0.1 atom %) and Pt (0.1 atom %) is used for anodizing. The matrix metal (Ti) is converted to oxide, whereas at the oxide/metal interface direct noble metal particle formation and alloying of Au and Pt takes place; continuously these particles are then picked up by the growing nanotube wall. In our experiments, the AuPt alloy NPs have an average size of 4.2 nm, and at the end of the anodic process, these are regularly dispersed over the TiO2 nanotubes. These alloyed AuPt particles act as excellent co-catalyst in photocatalytic H2 generation, with a H2 production rate of 12.04 µL h-1 under solar light. This represents a strongly enhanced activity as compared to TiO2 NTs decorated with monometallic particles of Au (7 µL h-1) or Pt (9.96 µL h-1).

12.
ChemistryOpen ; 7(2): 131-135, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29435398

RESUMO

Regularly spaced TiO2 nanotubes were prepared by anodizing a titanium substrate in triethylene glycol electrolyte at elevated temperature. In comparison to conventional TiO2 nanotubes, spaced nanotubes possess an adjustable spacing between the individual nanotubes; this allows for controlled buildup of a hierarchical nanoparticle-on-nanotube structure. Here, we use this principle for layer-by-layer decoration of the tubes with TiO2 nanoparticles. The hierarchical structure after N doping and NH3 treatment at 450 °C shows a significant enhancement of visible-light absorption, although it only carries a low doping concentration of nitrogen. For optimized N-doped and particle-decorated spaced TiO2 nanotubes, a considerable improvement in photocatalytic activity is obtained in comparison with conventional N-doped TiO2 nanotubes or comparable N-doped nanoparticle films. This is attributed to an enhanced visible-light absorption through the N-doped nanoparticle shell and a fast charge separation between the shell and the one-dimensional nanotubular core.

13.
Chemistry ; 23(50): 12406-12411, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28654181

RESUMO

In the present work we report on the key factors dictating the photoelectrochemical (PEC) performance of suboxide titania (TiOx ) nanotubes. TiOx nanotubes were produced by a systematic variation of reduction heat treatments of TiO2 in Ar/H2 . The properties of the TiOx tubes were investigated by electron paramagnetic resonance (EPR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), solid-state conductivity, reflectivity measurements, photocurrent spectroscopy, and photoelectrochemical hydrogen evolution. In line with earlier literature, these suboxide tubes show a drastically improved photoelectrochemical water-splitting performance compared to non-reduced anatase TiO2 tubes. In this work we show that the key improvement in water-splitting performance is due to the strongly improved conductivity of TiOx semimetalic tubes, reaching 13.5 KΩ per tube compared to 70 MΩ (for non-reduced anatase), and is not due to the enhanced visible-light absorbance.

14.
ChemSusChem ; 10(13): 2720-2727, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28437588

RESUMO

In this work, single crystalline α-Fe2 O3 nanoflakes (NFs) are formed in a highly dense array by Au seeding of a Fe substrate by a thermal oxidation technique. The NFs are conformally decorated with a thin FeOOH cocatalyst layer. Photoelectrochemical (PEC) measurements show that this photoanode, incorporating α-Fe2 O3 /FeOOH NFs rooted on the Au/Fe structure, exhibits significantly enhanced PEC water oxidation performance compared to the plain α-Fe2 O3 nanostructure on the Fe substrate. The α-Fe2 O3 /FeOOH NFs on Au/Fe photoanode yields a photocurrent density of 3.1 mA cm-2 at 1.5 VRHE , and a remarkably low onset potential of 0.5-0.6 VRHE in 1 m KOH under AM 1.5G (100 mW cm-2 ) simulated sunlight illumination. The enhancement in PEC performance can be attributed to a synergistic effect of the FeOOH top decoration and the Au underlayer, whereby FeOOH facilitates hole transfer at the interface of electrode/electrolyte and the Au layer provides a sink for the electron transport to the back contact. This results in a drastically improved charge-separation efficiency in the single crystalline α-Fe2 O3 NF photoanode.


Assuntos
Elétrons , Compostos Férricos/química , Ouro/química , Compostos de Ferro/química , Minerais/química , Nanoestruturas/química , Luz Solar , Água/química , Eletrodos , Modelos Moleculares , Conformação Molecular , Processos Fotoquímicos
15.
Small ; 13(14)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28145627

RESUMO

Establishing self-organized spacing between TiO2 nanotubes allows for highly conformal Nb2 O5 deposition that can be adjusted to optimized supercapacitive behavior.

16.
ChemSusChem ; 10(1): 62-67, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-27933749

RESUMO

'Black' TiO2 -in the widest sense, TiO2 reduced by various treatments-has attracted tremendous scientific interest in recent years because of some outstanding properties; most remarkably in photocatalysis. While the material effects visible light absorption (the blacker, the better), black titania produced by high pressure hydrogenation was recently reported to show another highly interesting feature; noble-metal-free photocatalytic H2 generation. In a systematic investigation of high-temperature hydrogen treatments of anatase nanoparticles, TEM, XRD, EPR, XPS, and photoelectrochemistry are used to characterize different degrees of surface hydrogenation, surface termination, electrical conductivity, and structural defects in the differently treated materials. The materials' intrinsic activity for photocatalytic hydrogen evolution is coupled neither with their visible light absorption behavior nor the formation of amorphous material, but rather must be ascribed to optimized and specific defect formation (gray is better than black). This finding is further confirmed by using a mesoporous anatase matrix as a hydrogenation precursor, which, after conversion to the gray state, even further enhances the overall photocatalytic hydrogen evolution activity.


Assuntos
Hidrogênio/química , Processos Fotoquímicos , Titânio/química , Catálise , Hidrogenação
17.
Nanoscale ; 8(38): 16868-16873, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27714183

RESUMO

In the present work we grow self-organized TiO2 nanotube arrays with a defined and controlled regular spacing between individual nanotubes. These defined intertube gaps allow one to build up hierarchical 1D-branched structures, conformally coated on the nanotube walls using a layer by layer nanoparticle TiO2 decoration of the individual tubes, i.e. having not only a high control over the TiO2 nanotube host structure but also on the harvesting layers. After optimizing the intertube spacing, we build host-guest arrays that show a drastically enhanced performance in photocatalytic H2 generation, compared to any arrangement of conventional TiO2 nanotubes or conventional TiO2 nanoparticle layers. We show this beneficial effect to be due to a combination of an increased large surface area (mainly provided by the nanoparticle layers) with a fast transport of the harvested charge within the passivated 1D nanotubes. We anticipate that this type of hierarchical structures based on TiO2 nanotubes with adjustable spacing will find even wider application, as they provide an unprecedented controllable combination of surface area and carrier transport.

18.
ChemSusChem ; 9(16): 2048-53, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27348809

RESUMO

The surface modification of semiconductor photoelectrodes with passivation overlayers has attracted great attention as an effective strategy to improve the charge separation and charge transfer processes across the semiconductor-electrolyte interface. In this work, a thin Fe2 TiO5 layer was decorated on nanostructured hematite nanoflake and nanocoral photoanodes (by thermal oxidation of iron foils) by a facile water-based solution method. Photoelectrochemical measurements show that the Fe2 O3 /Fe2 TiO5 heterostructure exhibits an obvious enhancement in photoelectrochemical water oxidation performance compared to the pristine hematite. For example, at 1.23 V versus the reversible hydrogen electrode (VRHE ) in 1 m KOH under AM 1.5 G (100 mW cm(-2) ) illumination, a 4-8× increase in the water oxidation photocurrent is achieved for Fe2 O3 /Fe2 TiO5 , and a considerable cathodic shift of the onset potential up to 0.53-0.62 VRHE is obtained. Moreover, the performance of the Fe2 O3 /Fe2 TiO5 heterostructure can be further improved by decoration with a SnOx layer. The enhancement in photocurrent can be attributed to the synergistic effect of Fe2 TiO5 /SnOx overlayers passivating surface states, and thus reducing surface electron-hole recombination.


Assuntos
Fontes de Energia Elétrica , Compostos Férricos/química , Energia Solar , Titânio/química , Água/química , Eletroquímica , Eletrodos , Oxirredução , Propriedades de Superfície
19.
Angew Chem Int Ed Engl ; 55(11): 3763-7, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26879340

RESUMO

Low-dose nitrogen implantation induces an ion and damage profile in TiO2 nanotubes that leads to "co-catalytic" activity for photocatalytic H2 -evolution (without the use of any noble metal). Ion implantation with adequate parameters creates this active zone limited to the top part of the tubes. The coupling of this top layer and the underlying non-implanted part of the nanotubes additionally contributes to an efficient carrier separation and thus to a significantly enhanced H2 generation.

20.
Adv Mater ; 28(12): 2432-8, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26810837

RESUMO

Subnitrides strongly enhance the efficiency of Ta3 N5 -nanotube photoanodes in photochemical water splitting. The fabrication of Ta3 N5 nanotube layers with a controlled subnitride layer at the interface to the back contact is demonstrated. The insertion of this subnitride layer has a strong influence on the electron transfer to the back contact, and as a result leads to a drastic shift in photocurrent onset potential and a considerable enhancement of photocurrent conversion efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...